This example is set up in Minion Pro for text, Myriad Pro for math, and TX fonts for symbols (and Greek).

\usepackage{txfonts}
\usepackage[upright]{txgreeks}
\usepackage[no-math]{fontspec}
\setmainfont[Mapping=tex-text]{Minion Pro}
\setsansfont[Mapping=tex-text,Scale=MatchUppercase]{Myriad Pro}
\renewcommand\familydefault\sfdefault
\usepackage[defaultmathsizes]{mathastext}
\renewcommand\familydefault\rmdefault

Typeset with mathastext 1.15d (2012/10/13). (compiled with XeT_EX on Mac OS X) To illustrate some Hilbert Space properties of the co-Poisson summation, we will assume K = Q. The components (a_v) of an adele a are written a_p at finite places and a_r at the real place. We have an embedding of the Schwartz space of test-functions on **R** into the Bruhat-Schwartz space on **A** which sends $\psi(x)$ to $\varphi(a) = \prod_p \mathbf{1}_{|a_p|_p \le 1}(a_p) \cdot \psi(a_r)$, and we write $E'_{\mathbf{R}}(g)$ for the distribution on **R** thus obtained from E'(g) on **A**.

Theorem 1. Let g be a compact Bruhat-Schwartz function on the ideles of **Q**. The co-Poisson summation $E'_{R}(g)$ is a square-integrable function (with respect to the Lebesgue measure). The $L^{2}(\mathbf{R})$ function $E'_{R}(g)$ is equal to the constant $-\int_{\mathbf{A}^{\times}} g(v)|v|^{-1/2}d^{*}v$ in a neighborhood of the origin.

Proof. We may first, without changing anything to $E'_{R}(g)$, replace g with its average under the action of the finite unit ideles, so that it may be assumed invariant. Any such compact invariant g is a finite linear combination of suitable multiplicative translates of functions of the type $g(v) = \prod_p \mathbf{1}_{|v_p|_p=1}(v_p) \cdot f(v_r)$ with f(t) a smooth compactly supported function on \mathbf{R}^{\times} , so that we may assume that g has this form. We claim that:

$$\int_{\boldsymbol{A}^{\times}} \left| \phi(v) \right| \sum_{q \in \boldsymbol{Q}^{\times}} \left| g(qv) \right| \sqrt{|v|} \, d^{*}v < \infty$$

Indeed $\sum_{q \in \mathbf{Q}^{\times}} |g(qv)| = |f(|v|)| + |f(-|v|)|$ is bounded above by a multiple of |v|. And $\int_{\mathbf{A}^{\times}} |\varphi(v)| |v|^{3/2} d^*v < \infty$ for each Bruhat-Schwartz function on the adeles (basically, from $\prod_{p} (1 - p^{-3/2})^{-1} < \infty$). So

$$\begin{split} \mathsf{E}'(g)(\phi) &= \sum_{q \in \mathbf{Q}^{\times}} \int_{\mathbf{A}^{\times}} \phi(v) g(qv) \sqrt{|v|} \, d^*v - \int_{\mathbf{A}^{\times}} \frac{g(v)}{\sqrt{|v|}} d^*v \int_{\mathbf{A}} \phi(x) \, dx \\ \mathsf{E}'(g)(\phi) &= \sum_{q \in \mathbf{Q}^{\times}} \int_{\mathbf{A}^{\times}} \phi(v/q) g(v) \sqrt{|v|} \, d^*v - \int_{\mathbf{A}^{\times}} \frac{g(v)}{\sqrt{|v|}} d^*v \int_{\mathbf{A}} \phi(x) \, dx \end{split}$$

Let us now specialize to $\varphi(a) = \prod_p \mathbf{1}_{|a_p|_p \leq 1}(a_p) \cdot \psi(a_r)$. Each integral can be evaluated as an infinite product. The finite places contribute 0 or 1 according to whether $q \in \mathbf{Q}^{\times}$ satisfies $|q|_p < 1$ or not. So only the inverse integers $q = 1/n, n \in \mathbf{Z}$, contribute:

$$\mathsf{E}'_{\mathsf{R}}(g)(\psi) = \sum_{n \in \mathbf{Z}^{\times}} \int_{\mathbf{R}^{\times}} \psi(nt) f(t) \sqrt{|t|} \frac{dt}{2|t|} - \int_{\mathbf{R}^{\times}} \frac{f(t)}{\sqrt{|t|}} \frac{dt}{2|t|} \int_{\mathbf{R}} \psi(x) \, dx$$

We can now revert the steps, but this time on \mathbf{R}^{\times} and we get:

$$E'_{\mathbf{R}}(g)(\psi) = \int_{\mathbf{R}^{\times}} \psi(t) \sum_{n \in \mathbf{Z}^{\times}} \frac{f(t/n)}{\sqrt{|n|}} \frac{dt}{2\sqrt{|t|}} - \int_{\mathbf{R}^{\times}} \frac{f(t)}{\sqrt{|t|}} \frac{dt}{2|t|} \int_{\mathbf{R}} \psi(x) \, dx$$

Let us express this in terms of $\alpha(y) = (f(y) + f(-y))/2 \sqrt{|y|}$:

$$\mathsf{E}'_{\mathsf{R}}(g)(\psi) = \int_{\mathsf{R}} \psi(y) \sum_{n \ge 1} \frac{\alpha(y/n)}{n} dy - \int_{0}^{\infty} \frac{\alpha(y)}{y} dy \int_{\mathsf{R}} \psi(x) \, dx$$

So the distribution $E'_{R}(g)$ is in fact the even smooth function

$$\mathsf{E}'_{\mathsf{R}}(g)(y) = \sum_{n \ge 1} \frac{\alpha(y/n)}{n} - \int_0^\infty \frac{\alpha(y)}{y} dy$$

As $\alpha(y)$ has compact support in $\mathbf{R} \setminus \{0\}$, the summation over $n \ge 1$ contains only vanishing terms for |y| small enough. So $E'_{\mathbf{R}}(g)$ is equal to the constant $-\int_{0}^{\infty} \frac{\alpha(y)}{y} dy = -\int_{\mathbf{R}^{\times}} \frac{f(y)}{\sqrt{|y|}} \frac{dy}{2|y|} = -\int_{\mathbf{A}^{\times}} g(t)/\sqrt{|t|} d^{*}t$ in a neighborhood of 0. To prove that it is L², let $\beta(y)$ be the smooth compactly supported function $\alpha(1/y)/2|y|$ of $y \in \mathbf{R}$ ($\beta(0) = 0$). Then ($y \ne 0$):

$$\mathsf{E}'_{\mathsf{R}}(g)(y) = \sum_{n \in \mathbf{Z}} \frac{1}{|y|} \beta(\frac{n}{y}) - \int_{\mathsf{R}} \beta(y) \, dy$$

From the usual Poisson summation formula, this is also:

$$\sum_{n\in \textbf{Z}} \gamma(ny) - \int_{\textbf{R}} \beta(y) \, dy = \sum_{n\neq 0} \gamma(ny)$$

where $\gamma(y) = \int_{\mathbf{R}} \exp(i 2\pi y w) \beta(w) dw$ is a Schwartz rapidly decreasing function. From this formula we deduce easily that $E'_{\mathbf{R}}(g)(y)$ is itself in the Schwartz class of rapidly decreasing functions, and in particular it is is square-integrable.

It is useful to recapitulate some of the results arising in this proof:

Theorem 2. Let g be a compact Bruhat-Schwartz function on the ideles of \mathbf{Q} . The co-Poisson summation $\mathsf{E}'_{\mathsf{R}}(g)$ is an even function on \mathbf{R} in the Schwartz class of rapidly decreasing functions. It is constant, as well as its Fourier Transform, in a neighborhood of the origin. It may be written as

$$\mathsf{E}'_{\mathsf{R}}(g)(y) = \sum_{n \ge 1} \frac{\alpha(y/n)}{n} - \int_0^\infty \frac{\alpha(y)}{y} dy$$

with a function $\alpha(y)$ smooth with compact support away from the origin, and conversely each such formula corresponds to the co-Poisson summation $E'_{R}(g)$ of a compact Bruhat-Schwartz function on the ideles of **Q**. The Fourier transform $\int_{\mathbf{R}} E'_{R}(g)(y) \exp(i2\pi wy) dy$ corresponds in the formula above to the replacement $\alpha(y) \mapsto \alpha(1/y)/|y|$.

Everything has been obtained previously.